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Example of Order and Disorder: 
xn+~ = (Axn + B) mod C 

M .  W o l f  1 

Received July 23, 1987 

A simple model with discrete dynamics is studied. The behavior of this model 
is very sensitive to the particular choice of parameters determining the system. 

1. In this paper I present a simple model exhibiting very complicated 
dynamics, which depends very strongly on the particular values of  the 
driving parameters. For some parameters the motion can be ergodic and 
for others the system can reveal very ordered behavior. 

In recent years there has been great interest in deterministic systems 
displaying irregular dynamics [see, e.g., Lichtenberg and Lieberman (1983), 
where many examples of  such systems are given]. In contrast to the most 
popular systems, for the description of  the proposed model only natural 
numbers are needed. 

Section 2 contains a description of  the model. Section 3 is devoted to 
a chaotic motion. Section 4 discussess the regular behavior of  the model. 
Section 5 contains a brief discussion of the intermediate behavior of  the 
model and some remarks. 

2. The model is two-dimensional and the "phase space" isdiscrete:  
both time and coordinate take natural values. The set of possible positions 
of the material point (a particle or a "small ball") performing the motion 
cons~.sts of  nodes regularly distributed along the circle; see Fig. 1. Let the 
total number of points on the circle be C; denote them by 0, 1 , . . . ,  C - 1. 
The position of the ball at the instant of time n will be denoted by x, ,  so 
x, e {0, t , . . . ,  C - 1}. The "dynamics" is given by the following rule: Let 
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Fig. 1. I l lus t ra t ion  of  the model .  

the moving ball be at the site xn. During an elementary interval of  time a 
ball shifts by A x ,  + B nodes in, e.g., the clockwise direction. Here A and 
B are natural numbers smaller then C: 0 < A < C - 1, 0 < B < C - 1. This 
rule can be written as the following equation of motion: 

x~+l = (Ax .  + B) mod C (1) 

The particle constrained to the motion described by (1) is " jumping"  from 
the node x, at the time n to the node Xn+l at the time n + 1. The number  
q, of  whole laps of the circle is given by 

q. = [(Ax.  + B ) /  C ] (2) 

where the square brackets denote the Entier function: [x] is the greatest 
integer -<x. It turns out that there is a great variety of  possible behaviors 
of  the particle, according to the particular values of  driving parameters A, 
B, and C. On one hand, the particle can perform a random walk around 
the circle. On the other hand, it is possible that the particle will fall after 
at most two jumps into such a node in which it will remain forever, regardless 
of  the initial value Xo. 

3. The behavior of  the particle is fully determined by the properties 
of  the sequence {xn}~=o generated by the iterations (1). First, note that the 

X oo elements of  the sequence { ,}n~0 depend on the value Xo and are natural 
numbers from the set { 1 , . . . ,  C - l } .  Due to this, the sequence {xn},~o 
starting at some index must be periodic, so there exist numbers ?( and T 
such that 

x,,+l = X,,+T Vn > W (3) 

It is well known that it is possible to choose parameters A, /7, and C such 
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that the period is maximal: T = C. The following theorem asserts when this 
is possible (Knuth, 1981): 

Theorem 1. The period T of the sequence generated by the iterations 
of equation (1) is equal to C if and only if: 

(i) B and C are mutually prime. 
(ii) A -  1 is a multiple of each prime p, a divisor of C. 

(iii) A -  1 is a multiple of 4 if C is a multiple of 4. 

Integers A, B, and C fulfilling the requirements of the above theorem 
exist such that the successive x~ are weakly correlated in the statistical sense 
(Knuth, 1981). In such a case equation (1) is used for the generation of  
random numbers in computers (of course for great C, e.g., C = 231- 1 = 
2,147,483,647). So, with appropriately chosen A, B, and C the particle will 
perform a random walk around the circle. This represents disorder in our 
system: each site of the phase space will be occupied after each C units of 
t ime-- the motion is ergodic and Poincar6's recurrence theorem holds (with 
time of recurrence equal to C). 

4. Now let us focus on the exactly opposite case, namely let us look 
for the fixed points of (1). Let us introduce the function 

f ( x )  = ( A x  + B )  rood C (4) 

Now we can write 

xn+l =f(xn) (5) 
The nth element x, can be expressed by the first one Xo as in the following 
superposition: 

x ,  = f  o f . . . . .  f ( x o )  =- f " ( x o )  (6) 

n t i m e s  

Let x* denote the fixed point of (4): 

x* = f ( x * )  (7) 

The above equation can be written in the following form: 

x*  = A x *  + B - Cq*  (8) 

where 

q* = [ ( a x * /  + B ) / C ]  (9) 

The existence of fixed points of the mapping (4) is equivalent to the existence 
of integer solutions x* and q* of equation (7). The equations of the form 

ax  + by = c (10) 
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where a, b, and e are given integers for which one seeks solutions x, y in 
integers, are called Diophantine equations (e.g., Courant  and Robbins, 1947). 
Such an equation can have a finite number  of  solutions, infinitely many, or 
none. As is well known, equation (10) has integer solutions if and only if 
e is the multiple of  the greatest common divisor (GCD) of the numbers a 
and b. It is common to denote the G C D  of a and b as (a, b). As q* is an 
integer, equation (8) is an example of  a Diophantine equation. Writing (8) 
in the form 

Cq* - ( a  - 1)x* -- B 

we see that the following lemma holds: 

L e m m a  1. The necessary condition for the existence of  fixed points of  
the mapping (3) is that B should be a multiple of  (C, A - I ) .  

I f  the condition for the existence of solutions of  equation (10) is 
fulfilled, then the number  of  different solutions is equal to (a, b) and if one 
particular solution (x (~ y(O)) is known, then all the remaining ones are 
given by the formula (Courant  and Robbins, 1947) 

x (r)= x~~ rb/(a ,  b) 

y ( r ) = y ( ~  b), r c~ l  

Let us assume that (C, A -  1) = d, so there exist numbers a and c such that 
A = ad + 1, C = ed. Then for the existence of  fixed points we should have 
by Lemma 1 that B = bd. Then it follows that the sequence 

X n +  1 = ( ( ad + 1)x, + bd)  mod cd 

will possess d fixed points. Denoting the smallest one by x *(~ we have 
that all remaining fixed points are given by the formula 

x *(r) = x *(~ + rc, r = O, 1 , . . . ,  d - 1 

In particular it is possible to have, for the rather pathological choice A = 1 
and B = C, C fixed points, since from 

X,+l = (x, + C) mod C (~  x, rood C) 

it follows that x,+l = x,.  It is also easy to write down the formula describing 
the "un i form"  motion of  the particle along the circle in which the ball shifts 
by the same number  K of  nodes in each interval of  time: 

x,+l = (Xn + K )  mod C 

Now let us look more closely at the case when only one single fixed 
point exists. The computer  experiments showed that, for a given C, values 
of  A exist such that, regardless o f  B, all Xo are mapped  into a unique fixed 
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point after only a few iterations of (4). It is natural to consider the fixed 
point of  (4) as an attractor. Each attractor has its own domain of attraction 
called a basin. For the case of  natural numbers we take the following 
definition. 

Definition. The basin ~ ( x * )  of the attractor x* is the set of  initial 
points X~o i) (i = 1, 2 , . . . ,  b) of  the sequences (1) for which there exist numbers 
N ~) such that 

f~"~(X~o% = x* 

Let us remark that for real numbers (continuous case) the fixed point is 
usually reached after an infinite number  of  iterations. 

We will confine ourselves to the case when b = C, so the basin consists 
of  all natural numbers: X o ~ { 0 , 1 , . . . ,  C - l } .  (It should be noted that 
{0, 1 , . . . ,  C - 1} = N rood C, where N denotes the set of  natural numbers.)  

Theorem 2. ~ (x*) = {0, 1 . . . .  , C - 1} if and only if there exists a natural 
number  N such that A ~" is divisible by C: 

(aX-~ 0) mod C. (11) 

Proof. First let us remark that the domain of the function (4) can be 
extended to all real numbers by means of the formula 

f ( x )  = a x  + B - C[ (Ax  + B) /  C] (12) 

The graph of this function consists of segments of a line; see Fig. 2a. The 
function (12) is periodic with period 

T :  C / A  

Using the obvious relation 

(a + kc) m o d c  = a m o d c  (13) 

one can prove by induction that 

x~ =fn(xo)--- Anxo+ B mod C (14) 

so the superposition of linear functions is still a linear function. Since A is 
greater than 1, the slope of the successive superpositions of f becomes 
greater and greater; see Fig. 2b. The period of f~ is given by the formula 

T(~)= C / A  n 

i.e., 

F ( x  + T~"l )=f"(x)  
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Fig. 2. (a) Graph of the function f(x) = (2x +26) mod 70. (b) Graph of the second super- 
position of function f(x) = (2x + 26) rood 70. 

For growing n the period decreases. If for some N it happens that the 
interval of  length 1 contains a multiple of  intervals of  length T (x), 

I =  K T ( N ) =  K C / A  N, K cM (15) 

then 

fN(X+I)=fN(x) 
In particular, the Nth superposition of  f will take the same values on all 
natural numbers, which in turn means that all Xo are mapped into the fixed 
point. But from (15) there follows (11), so the existence of  a basin consisting 
of  all natural numbers is equivalent to (11). �9 

Self-consistency demands that from (11) fulfilled for some N, it should 
follow that (A ~ 0) mod C for all N' > N: after reaching the fixed point, 
successive iterations would not move it. This is indeed so, since writing 
?(' = ?r + ~ ,  we have 

A:~"= A'~A :r = A ~ K C  --~ K ' C  

The smallest N satisfying (11) is equal to the maximal number of  
iterations needed for turning all Xo into the fixed point. 
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Because equation (11) does not involve B, the above consideration 
explains why the existence of a maximal basin as well as the number of 
iterations needed for obtaining the fixed point does not depend on the 
particular value of B. But the value of fixed point depends on B: 

Corollary 1. If equation (11) is fulfilled, then the unique fixed point 
of (4) is given by the formula 

x* = ( a"  - I B )  rood C (16) 
\ A - 1  ] 

Proof. Since the •th superposition of f is constant, it is sufficient to 
put in (14) Xo = 0. Using the property (13), one can easily see that x* given 
by (16) satisfies x* = f (x* ) .  ! 

Corollary 2. If  C is prime, then equation (11) does not have integer 
solutions for A and ~f. 

Proof. The modulo operation possesses the following property 
(Courant and Robbins, 1947): 

If e is prime, then from ( ab =- O) rood c it follows that either (a--- 
0) rood c or ( b ~ 0 )  rood c. 

Let N be the smallest integer fulfilling (11). Then, writing 

(A x -= 0) mod C <=:> ( A A  x-1 -= 0) rood C 

and applying the above property, we see that either (A--- 0) rood C or 
(A x-1 -= 0) rood C. But the first relation is impossible, since A < C, and the 
second relation is impossible by the definition of W, as the smallest integer 
fulfilling (11). �9 

Now let us dwell briefly on the problem when the equation (11) can 
have solutions. Let us decompose C into primes: 

C = p ~ l ~ p ~ 2 ~ . . .  p~r~ 

where M1 primes Pi are different. It is easy to see that if at least for one i one 
has ~(i)  > 1, then taking 

A = p~(a ) . . ,  p ~ ( i ) - i  . . . p O / ( r )  

we can fulfill (11) with N = 2 .  On the contrary, if o~(i) = 1 for every i, then 
(11) has no solutions (Corollary 2 is a special case of this observation). For 
large C it can be difficult to check whether all c~ (i) are different from 1. But 
there is probabilistic information available. It is known (Kac, 1959) that 
the probability that for a randomly chosen natural number all o~(i) = 1 is 
equal to 6/7r 2~ 0.608. So we see that with probability 0.392 it is possible 
to find a number C such that there exist numbers A for which the basin 
of a unique fixed point consists of all natural numbers. 
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Finally let us remark that from the proof of Theorem 2 it follows that 
for A and C satisfying (11) the mapping (4) always has a fixed point 
regardless of the value of B. Lemma 1 tells us that this is possible only 
when B is divisible by ( A - 1 ,  C) for every B, even B prime, which can 
happen only if ( A -  1, C) -- 1. Indeed, we have the following result: 

Corollary3. If  there is Y such that (A N -= 0) mod C, then (A - 1, C) = 1. 

Proof Let us assume that d = ( A - 1 ,  C). Then there exist numbers a 
and c such that A = ad + 1, C = cd. By assumption, A ~w = KC, so using the 
binomial theorem, we have 

A N = l + ( 1  N )  ad+(N22)a2d2+ ...+(NN) al~dN=KC 

and hence 

where 

d(Kc - /3) = 1 (17) 

/ 3 = ( Y l )  a + ( 2  X )  a 2 d + . . . + ( N y ) a N d N _  1 

But since d and Kc-[3 are integers, (17) can only hold if d = 1 (then also 
Kc-f l  = 1, which is a tautology for d = 1). �9 

5. For parameters not fulfilling the assumptions of either Theorem 1 
or Theorem 2, there is a variety of intermediate behaviors of the model. 
Some possible xo will fall into the fixed point and other Xo will fall into 
limiting cycles. Some examples are given in Figs. 3-5. These figures show 
the evolution of the set of balls moving around the circle according to the 

Fig. 3. Example of an attractor with a maximal basin. Sites occupied by the particles are 
black. Since the initial state was taken disordered, this figure shows how the order emerges 
from chaos. Here C =65,536=2 ~6, A =  1154=2.557,  so all particles fall into the attractor 
after at most 16 iterations. 
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Fig. 4. Here  A = 78, B = 33, C = 195 = 3 - 5 . 1 3 .  All par t ic les  fall af ter  one uni t  of  t ime e i ther  

into the 4-cycle (33, 72, 189, 150) or into the fixed poin t  x* = 111. 

Fig, 5. An example  of chaos  for A, B, and  C fulf i l l ing the condi t ions  of  Theorem 1. Here 

C = 243 = 35, A = 16, B = 17. At  al l  t imes  each site is occup ied  by at mos t  one part icle ,  

rule (1). Let us remark that such a "gas" consists of noninteracting particles. 
On the top of each figure the initial positions of balls are plotted (the time 
is directed downward). Successive rows correspond to successive time steps 
in evolution. The starting positions as well as the number of particles were 
chosen randomly. In the example of Fig. 3 all particles fall into one node, 
so for A and B fulfilling requirements of Theorem 2 the particles resemble 
bosons and condense to one state. On the contrary, for A, B, and C fulfilling 
the requirements of Theorem 1 at all times each site will be occupied by at 
most one particle and they behave like fermions. 

It is also tempting to consider the generalization of (1) corresponding 
to Brownian motion. Namely the values of A and B can be chosen randomly 
between I and C - 1  at each instant of time. In this way the particle will 
perform jumps of random lengths. The inclusion of such noise is now under 
study, both numerically as well as analytically. 
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